Analysis of Mutation Rate of 17 Y-Chromosome Short Tandem Repeats Loci Using Tanzanian Father-Son Paired Samples

Author:

Bugoye Fidelis Charles1ORCID,Mulima Elias1,Misinzo Gerald2

Affiliation:

1. Department of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania

2. Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro, Tanzania

Abstract

Hundred unrelated father-son buccal swab sample pairs collected from consented Tanzanian population were examined to establish mutation rates using 17 Y-STRs loci DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385a, DYS385b, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, and Y-GATA-H4 of the AmpFlSTRYfiler kit used in forensics and paternity testing. Prior to 17 Y-STRs analysis, father-son pair biological relationships were confirmed using 15 autosomal STRs markers and found to be paternally related. A total of four single repeat mutational events were observed between father and sons. Two mutations resulted in the gain of a repeat and the other two resulted in a loss of a repeat in the son. All observed mutations occurred at tetranucleotide loci DYS389II, DYS385a, and DYS385b. The locus specific mutation rate varied between 0 and 1.176 x10−3 and the average mutation rate of 17Y-STRs loci in the present study was 2.353x10−3 (6.41x10−4 - 6.013x10−3) at 95% CI. Furthermore the mean fathers’ age with at least one mutation at son’s birth was 32 years with standard error of 2.387 while the average age of all fathers without mutation in a sampled population at son’s birth was 26.781 years with standard error of 0.609. The results shows that fathers’ age at son’s birth may have an effect on Y-STRs mutation rate analysis, though this age difference was statistically not significant using unpaired samples t-test (p = 0.05). As a consequence of observed mutation rates in this study, the precise and reliable understanding of mutation rate at Y-chromosome STR loci is necessary for a correct evaluation and interpretation of DNA typing results in forensics and paternity testing involving males. The criterion for exclusion in paternity testing should be defined, so that an exclusion from paternity has to be based on exclusion constellations at a minimum of two 17 Y-STRs loci.

Funder

Government Chemist Laboratory Authority

Publisher

Hindawi Limited

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3