Vital-SCOPE: Design and Evaluation of a Smart Vital Sign Monitor for Simultaneous Measurement of Pulse Rate, Respiratory Rate, and Body Temperature for Patient Monitoring

Author:

Sun Guanghao1ORCID,Matsui Takemi2ORCID,Watai Yasuyuki2,Kim Seokjin2,Kirimoto Tetsuo1,Suzuki Satoshi3,Hakozaki Yukiya4

Affiliation:

1. Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan

2. Graduate School of System Design, Tokyo Metropolitan University, Tokyo, Japan

3. Department of Mechanical Engineering, Kansai University, Osaka, Japan

4. Genkikai Yokohama Hospital, Yokohama, Japan

Abstract

Consistent vital sign monitoring is critically important for early detection of clinical deterioration of patients in hospital settings. Mostly, nurses routinely measure and document the primary vital signs of all patients 2‐3 times daily to assess their condition. To reduce nurse workload and thereby improve quality of patient care, a smart vital sign monitor named “Vital‐SCOPE” for simultaneous measurement of vital signs was developed. Vital-SCOPE consists of multiple sensors, including a reflective photo sensor, thermopile, and medical radar, to be used in simultaneous pulse rate, respiratory rate, and body temperature monitoring within 10 s. It was tested in laboratory and hospital settings. Bland-Altman and Pearson’s correlation analyses were used to compare the Vital-SCOPE results to those of reference measurements. The mean difference of the respiratory rate between respiratory effort belt and Vital-SCOPE was 0.47 breaths per minute with the 95% limit of agreement ranging from −7.4 to 6.5 breaths per minute. The Pearson’s correlation coefficient was 0.63 (P<0.05). Moreover, the mean difference of the pulse rate between electrocardiogram and Vital-SCOPE was 3.4 beats per minute with the 95% limit of agreement ranging from −13 to 5.8 beats per minute; the Pearson’s correlation coefficient was 0.91 (P<0.01), indicating strong linear relationship.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3