Mullite Reinforced SiC/Al2O3 Composites Prepared by Microwave Sintering Based on Green Manufacturing

Author:

Dang Xudan1ORCID,Shi Shaojie2,Li Linjun3,Luo Fei1,Ding Zheng1

Affiliation:

1. School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191, China

2. Finance and Asset Management Division, Henan University of Engineering, Zhengzhou 451191, China

3. Engineering Training Certre, Henan University of Engineering, Zhengzhou 451191, China

Abstract

In the preparation process of composites, the implementation of green manufacturing technology has an important impact on improving material properties and preparation efficiency. The adopting of green manufacturing technology not only greatly reduces the energy consumption but also effectively avoids the environmental pollution. Compared with the traditional material preparation process, the material preparation process for green manufacturing is a new concept and idea. Microwave sintering is such an efficient, clean, and pollution-free preparation process, so it is widely used in the field of material preparation. By microwave sintering, the mullite reinforced SiC/Al2O3 composites with different SiC particle size were prepared from the composite powders composed of SiC particles coated with SiO2, by a sol-gel method and Al2O3 particles. The effect of SiC particle size on the microstructure, bulk density, fracture toughness, flexural strength, and thermal shock resistance of SiC/Al2O3 composites was studied. The bulk density, fracture toughness, and flexural strength were evaluated by the Archimedes method, single-side notched beam method, and three-point bending method, respectively. The thermal shock resistance of samples was investigated through the combination of water quenching and three-point bending methods. The results showed that with the increase of SiC particle size, the bulk density, fracture toughness, and flexural strength of samples all increased first and then decreased. The bulk density, fracture toughness, flexural strength, and flexural strength retention of SiC(5 μm)/Al2O3 composites were better than those of other samples, which were 2.06 g/cm3, 1.98 MPa·m1/2, 63 MPa, and 60%, respectively. The better mechanical properties and thermal shock resistance of SiC(5 μm)/Al2O3 composites are due to the formation of bridging mullite whiskers between SiC and Al2O3 particles with large length diameter ratio. Therefore, the unique sintering mechanisms of size coupling effect and local thermal aggregation effect in microwave sintering were discussed. The research results can not only provide reference for the preparation process of mullite reinforced SiC/Al2O3 composites but also for the wide application of microwave sintering technology.

Funder

Science and Technology Project of Henan Province for Tackling Key Problems

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference41 articles.

1. Research on manufacturing process and technology of chemical equipment based on the concept of green manufacturing;X. U. Ni;Process technology,2020

2. Implementing mechod of green manufacture oriented material, energy and environment;C. Hu;Coal Mine Machinery,2007

3. Analysis of green manufacturing technology in mechanical manufacturing process;C. Wu;Internal Combustion Engines and Accessories,2021

4. New mechanical manufacturing technology of green manufacturing;J. Liu;Internal Combustion Engines and Accessories,2020

5. Research on materials selection for green manufacturing;J. XI;Materials Reports,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3