Remaining Useful Life Prediction of Rolling Bearings Using Electrostatic Monitoring Based on Two-Stage Information Fusion Stochastic Filtering

Author:

Zhang Ying12ORCID,Wang Anchen1

Affiliation:

1. College of Automobile and Traffific Engineering, Nanjing Forestry University, Nanjing 210037, China

2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210037, China

Abstract

The accurate prediction of the remaining useful life (RUL) of rolling bearings is of great significance for a rational formulation of maintenance strategies and the reduction of maintenance costs. According to the two-stage nonlinear degradation characteristics of rolling bearing operation, this paper proposes a prognosis model based on modified stochastic filtering. First, multiple features reextracted from the time domain, frequency domain, and complexity angles, and the baseline Gaussian mixture model (GMM) is established using the normal operating data after spectral regression. The Bayesian-inferred distance (BID) is used as a quantitative indicator to reflect the bearing performance degradation degree. Then, taking multiparameter fusion results as input, the relationship between BID and remaining life is established by the two-stage stochastic filtering model to realize online dynamic remaining useful life prediction. The method in this paper overcomes the difficulty of accurately defining the failure threshold of rolling bearing. At the same time, it reduces the computational burden, avoiding the need of calculating the joint probability distribution for high-dimensional data. Finally, the proposed method has been verified experimentally to have high precision and engineering application value.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3