Design, Modeling, and Analysis of a Novel Microgripper Based on Flexure Hinges

Author:

Wu Zhigang1,Li Yangmin12

Affiliation:

1. Department of Electromechanical Engineering, University of Macau, Macau

2. School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract

A new 2-DOF microgripper, which can perform the processing of the objects assembly and biological cells injection, is designed and modeled in this paper. The clamping action of the microgripper with the x direction is completed, however, when anything is clamped by the end effector, which can be completely driven by an actuator generated in y direction, at lastclamping and pushing motion are realized. The flexure hinge, which takes place of the conventional joint, is used as the translational and rotational hinges in the new structure. Otherwise, the whole microgripper is monolithic processing, which can efficiently overcome the disadvantages of the conventional hinge with friction, backlash, anderrors caused by the hinge assembly. Firstly, a kind of novel microgripper is designed in this paper, which can accomplish two-dimensional independent motions including a separate grip and single track push without interfering with each other. The bridge type amplifying structure with two-end output is adopted in the gripper to increase the motion range and the capacity of the microgripper. The piezoelectric actuator with fast response and high resolution is used as the drive element. Secondly, the geometrical and kinematical models are established and the formulas of the amplifying ratio, stiffness, maximum stress, and the natural frequency of this model are calculated, respectively. Finally, the FEM (finite element modeling) based on ANSYS software is built up to validate the formulas.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3