Monitoring the Modifications of the Vitreous Humor Metabolite Profile after Death: An Animal Model

Author:

Rosa Maria Francesca1ORCID,Scano Paola2ORCID,Noto Antonio3ORCID,Nioi Matteo1ORCID,Sanna Roberta2,Paribello Francesco1,De-Giorgio Fabio4,Locci Emanuela1ORCID,d’Aloja Ernesto1

Affiliation:

1. Department of Public Health, Clinical and Molecular Medicine, Forensic Science Unit, University of Cagliari, SS 554 Bivio per Sestu, 09042 Monserrato, Italy

2. Department of Chemical and Geological Sciences, University of Cagliari, SS 554 Bivio per Sestu, 09042 Monserrato, Italy

3. Department of Surgery, University of Cagliari, SS 554 Bivio per Sestu, 09042 Monserrato, Italy

4. Public Health Institute, Forensic Science Unit, Catholic University, Largo Francesco Vito 1, 00165 Rome, Italy

Abstract

We applied a metabolomic approach to monitor the modifications occurring in goat vitreous humor (VH) metabolite composition at different times (0, 6, 12, 18, and 24 hours) after death. The1H-NMR analysis of the VH samples was performed for the simultaneous determination of several metabolites (i.e., the metabolite profile) representative of the VHstatusat different times. Spectral data were analyzed by Principal Component Analysis (PCA) and by Orthogonal Projection to Latent Structures (OPLS) regression technique. PCA and OPLS suggested that different spectral regions were involved in time-related changes. The major time-related compositional changes, here detected, were the increase of lactate, hypoxanthine, alanine, total glutathione, choline/phosphocholine, creatine, andmyo-inositol and the decrease of glucose and 3-hydroxybutyrate. We attempted a speculative interpretation of the biological mechanisms underlying these changes. These results show that multivariate statistical approach, based on1H NMR metabolite profiling, is a powerful tool for detecting ongoing differences in VH composition and may be applied to investigate several physiological and pathological conditions.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3