Extracting Wetland Type Information with a Deep Convolutional Neural Network

Author:

Guan XianMing123ORCID,Wang Di4,Wan Luhe12ORCID,Zhang Jiyi56

Affiliation:

1. Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China

2. College of Geographic Science, Harbin Normal University, Harbin 150025, China

3. Heilongjiang Geomatics Center of NASMG, Harbin 150081, China

4. Heilongjiang Institute of Geomatics Engineering, Harbin 150081, China

5. College of Geographic Science, Nantong University, Nantong 226019, China

6. Department of Geographic Information Science, Chuzhou University, Chuzhou 239000, China

Abstract

Wetlands have important ecological value. The application of wetland remote sensing is essential for the timely and accurate analysis of the current situation in wetlands and dynamic changes in wetland resources, but high-resolution remote sensing images display nonobvious boundaries between wetland types. However, high classification accuracy and time efficiency cannot be guaranteed simultaneously. Extraction of wetland type information based on high-spatial-resolution remote sensing images is a bottleneck that has hindered wetland development research and change detection. This paper proposes an automatic and efficient method for extracting wetland type information. First, the object-oriented multiscale segmentation method is used to realize the fine segmentation of high-resolution remote sensing images, and then the deep convolutional neural network model AlexNet is used to classify automatically the types of wetland images. The method is verified in a case study involving field-measured data, and the classification results are compared with those of traditional classification methods. The results show that the proposed method can more accurately and efficiently extract different wetland types in high-resolution remote sensing images than the traditional classification methods. The proposed method will be helpful in the extension and application of wetland remote sensing technology and will provide technical support for the protection, development, and utilization of wetland resources.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3