A Novel Hierarchical Hybrid Model for Short-Term Bus Passenger Flow Forecasting

Author:

Zhai Huawei12ORCID,Tian Ruijie1,Cui Licheng3ORCID,Xu Xiaowei2ORCID,Zhang Weishi1

Affiliation:

1. Information Science and Technology School, Dalian Maritime University, Dalian 116026, China

2. University of Arkansas at Little Rock, Little Rock, AR, USA

3. Public Security Information Department, Liaoning Police College, Dalian 116036, China

Abstract

For the increasing travel demands and public transport problems, dynamically adjusting timetable or bus scheduling is necessary based on accurate real-time passenger flow forecasting. In order to get more accurate passenger flow in future, this paper proposes a novel hierarchical hybrid model based on time series model, deep belief networks (DBNs), and improved incremental extreme learning machine (Im-ELM) to forecast short-term passenger flow. The proposed model is named HTSDBNE with two modelling steps. First, referring the idea of parallelization, the hybrid model, constructed by time series model, DBN, and Im-ELM, is used to forecast short-term passenger flow in different time scales hierarchically and parallel. Second, Im-ELM is utilized to analyse the relationship of forecasting results from the first step, and the weighted outputs of Im-ELM are as the final forecasting results. Comparing with single forecasting models and typical hybrid forecasting models, the testing results indicate that HTSDBNE has better performances. The mean absolute percent error of prediction results is around 10% and fully meets the application requirements of bus operation enterprise.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3