Zwitterion Effect of Cow Brain Protein towards Efficiency Improvement of Dye-Sensitized Solar Cell (DSSC)

Author:

Widhiyanuriyawan Denny1ORCID,Trihutomo Prihanto12ORCID,Soeparman Sudjito1,Yuliati Lilis1

Affiliation:

1. Department of Mechanical Engineering, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia

2. Department of Mechanical Engineering, State University of Malang, Jl. Semarang 5, Malang 65145, Indonesia

Abstract

Dye-Sensitized Solar Cell (DSSC) constitutes a solar cell using natural dyes from plants that are adsorbed in semiconductors to convert solar energy into electrical energy. DSSC has relatively inexpensive fabrication costs, is easy to produce, works in visible light, and is environmentally friendly. The disadvantage of DSSC is that its efficiency is still low compared to silicon solar cells. This low efficiency is due to obstacles in the flow of electric current on DSSC. In this study, DSSC has been successfully fabricated with the deposition of clathrin protein from cow brain. The zwitterions effect of protein on cow brain is able to reduce resistance and increase electric current on DSSC. The zwitterions effect of cow brain protein that fills gaps or empty spaces between TiO2 particles generates acidic reactions (capturing electrons) and bases (releasing electrons); hence, proteins in the cow brain are able to function as electron bridges between TiO2 molecules and generate an increase in electric current in DSSC. The method used in this research was to deposit clathrin protein from cow brain in a porous TiO2 semiconductor with a concentration of 0%, 25%, 50%, and 75%. Tests carried out on DSSC that have been performed were X-Ray Diffractometer (XRD) testing to determine the crystal structure formed, Fourier Transform Infrared Spectroscopy (FTIR) testing to determine the functional groups formed on DSSC, Scanning Electron Microscopy (SEM) testing to determine the surface morphological characteristics of the DSSC layer, and testing the efficiency using AM 1.5 G solar simulator (1000 W/m2) to determine the efficiency changes that occur in DSSC. From the XRD test results by increasing the concentration of cow brain protein in DSSC, the structure of amino acid crystals also increased and the crystal size increased with the largest crystal size of 42.25 nm at the addition of 75% of cow brain protein. FTIR test results show that the addition of cow brain protein will form functional protein-forming amino groups on DSSC. FTIR analysis shows the sharp absorption of energy by protein functional groups in the FTIR spectrum with increasing concentration of cow brain protein in DSSC. The SEM test results show that the concentration of additional molecules of protein deposited into TiO2 increases and the cavity or pore between the TiO2 molecules decreases. The reduction of cavities in the layers indicates that protein molecules fill cavities that exist between TiO2 molecules. From the results of testing using AM 1.5 G solar simulator (1000 W/m2), the highest efficiency value is 1.465% with the addition of 75% brain protein concentration.

Funder

Universitas Brawijaya

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3