Multiple Morphological Constraints-Based Complex Gland Segmentation in Colorectal Cancer Pathology Image Analysis

Author:

Zhang Kun1ORCID,Fu JunHong1,Hua Liang1ORCID,Zhang Peijian1,Shao Yeqin2,Xu Sheng3,Zhou Huiyu4ORCID,Chen Li5,Wang Jing6

Affiliation:

1. Department of Electrical Engineering, Nantong University, Nantong 226019, China

2. School of Transportation, Nantong University, Nantong 226019, China

3. School of Electronic and Information Engineering, Nantong Vocational University, Nantong 226019, China

4. School of Informatics University of Leicester, Leicester, UK

5. Medical School, Nantong University, Nantong 226019, China

6. Nantong Second People’s Hospital, Nantong 226019, China

Abstract

Histological assessment of glands is one of the major concerns in colon cancer grading. Considering that poorly differentiated colorectal glands cannot be accurately segmented, we propose an approach for segmentation of glands in colon cancer images, based on the characteristics of lumens and rough gland boundaries. First, we use a U-net for stain separation to obtain H-stain, E-stain, and background stain intensity maps. Subsequently, epithelial nucleus is identified on the histopathology images, and the lumen segmentation is performed on the background intensity map. Then, we use the axis of least inertia-based similar triangles as the spatial characteristics of lumens and epithelial nucleus, and a triangle membership is used to select glandular contour candidates from epithelial nucleus. By connecting lumens and epithelial nucleus, more accurate gland segmentation is performed based on the rough gland boundary. The proposed stain separation approach is unsupervised, and the stain separation makes the category information contained in the H&E image easy to identify and deal with the uneven stain intensity and the inconspicuous stain difference. In this project, we use deep learning to achieve stain separation by predicting the stain coefficient. Under the deep learning framework, we design a stain coefficient interval model to improve the stain generalization performance. Another innovation is that we propose the combination of the internal lumen contour of adenoma and the outer contour of epithelial cells to obtain a precise gland contour. We compare the performance of the proposed algorithm against that of several state-of-the-art technologies on publicly available datasets. The results show that the segmentation approach combining the characteristics of lumens and rough gland boundary has better segmentation accuracy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3