Stream Classification Algorithm Based on Decision Tree

Author:

Guo Jinlin1ORCID,Wang Haoran1,Li Xinwei1,Zhang Li2

Affiliation:

1. College of Systems Engineering, National University of Defense Technology, Changsha 410000, China

2. Software College, Northeastern University, Shenyang 110000, China

Abstract

Due to the rise of many fields such as e-commerce platforms, a large number of stream data has emerged. The incomplete labeling problem and concept drift problem of these data pose a huge challenge to the existing stream data classification methods. In this respect, a dynamic stream data classification algorithm is proposed for the stream data. For the incomplete labeling problem, this method introduces randomization and iterative strategy based on the very fast decision tree VFDT algorithm to design an iterative integration algorithm, and the algorithm uses the previous model classification result as the next model input and implements the voting mechanism for new data classification. At the same time, the window mechanism is used to store data and calculate the data distribution characteristics in the window, then, combined with the calculated result and the predicted amount of data to adjust the size of the sliding window. Experiments show the superiority of the algorithm in classification accuracy. The aim of the study is to compare different algorithms to evaluate whether classification model adapts to the current data environment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference18 articles.

1. YuZ.Research on Related Issues of Massive Data Mining2015M.S. thesis

2. Mining high-speed data streams;P. Domingos

3. Probability inequalities for sums of bounded random variables;W. Hoeffding;Journal of the American Statistical Association,1962

4. Accurate decision trees for mining high-speed data streams;J. Gama

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3