Affiliation:
1. Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
Abstract
The bone-bonding ability of a material is evaluated by examining apatite formation on its surface in simulated body fluid (SBF). Partially stabilized zirconia (ZrO2) is currently attractive as an alternative to titanium (Ti) implants; however, no quantitative analysis of apatite formation between Ti and ZrO2 in SBF has been reported. In the present study, we quantitatively evaluated apatite formation onto Ti or ZrO2 in SBF using the 27 MHz quartz crystal microbalance method (QCM). In the QCM measurements, apatite formation was detected as a frequency decrease in the Ti or ZrO2 sensor. Frequency decreases were observed at around 1 hour for Ti and at around 2 hours for the ZrO2 sensor after the injection of SBF. This revealed that the Ti sensor showed faster apatite formation than ZrO2. There was no significant difference in the amounts of apatite formation between the Ti and ZrO2 sensors after 24 hours of apatite formation in SBF. In conclusion, the present quantitative study using QCM revealed that apatite formation on the Ti surface in the SBF was obviously faster than that on the ZrO2 surface. Faster apatite formation may predict faster initiation of bone formation on Ti compared with ZrO2.
Funder
Japan Society for the Promotion of Science
Subject
General Engineering,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献