Vanillic Acid Inhibited the Induced Glycation Using In Vitro and In Vivo Models

Author:

Alhadid Amani1ORCID,Bustanji Yasser23ORCID,Harb Amani4ORCID,Al-Hiari Yusuf5ORCID,Abdalla Shtaywy6ORCID

Affiliation:

1. Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan

2. Department of Biopharmaceuticals and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan

3. Department of Basic Medical Sciences, College of Medicine, University of Sharjeh, Sharjeh 27272, UAE

4. Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan

5. Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan

6. Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan

Abstract

Background. Glycation is implicated in the pathophysiology of many diseases, including diabetes, cancer, neurodegenerative diseases, and aging. Several natural and synthetic compounds were investigated for their antiglycation activity. We evaluated the antiglycation effect of vanillic acid (VA) using in vitro and in vivo experimental models. Methods. In vitro, bovine serum albumin (BSA) (50 mg/ml) was incubated with glucose (50 mM) with or without VA at 1.0–100 mM for 1 week at 37°C, and then, excitation/emission fluorescence was measured at 370/440 nm to determine glycation inhibition. The cytoprotective effect of VA was evaluated using RAW 264.7 cells incubated with or without VA at 7.8–500 μM along with 100–400 μM of methylglyoxal for 48 hours, and cell viability was determined using the MTT assay. Aminoguanidine (AMG) was used as a positive control in both in vitro and cell culture experiments. In vivo, 52 streptozotocin-induced diabetic rats were randomly assigned to 4 groups and treated with 0, 1.5, 4.5, or 15 mg/kg VA for four weeks. Serum fructosamine and blood glycosylated hemoglobin (HbA1c) were then measured, and advanced glycation end-products (AGEs) were detected in the kidneys and the skin of deboned tails using an immunohistochemistry assay. Results. VA caused a concentration-dependent effect against BSA glycation (IC50 of 45.53 mM vs. 5.09 mM for AMG). VA enhanced cell viability at all concentrations of VA and methylglyoxal. VA did not affect serum fructosamine or blood HbA1c levels, although it markedly decreased AGEs in the kidney in a dose-dependent manner and decreased AGEs in the skin of deboned tail tissues. Conclusion. VA had significant antiglycation activity at cellular and long-term glycation.

Funder

Deanship of Academic Research, University of Jordan

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3