Analysis of Hybrid Ejector Absorption Cooling System

Author:

Sioud Doniazed1ORCID,Bellagi Ahmed1

Affiliation:

1. Department of Energy Engineering, Ecole Nationale d’Ingénieurs de Monastir (ENIM), University of Monastir, Tunisia

Abstract

In this paper, a hybrid ejector single-effect lithium-bromide water cycle is theoretically investigated. The system is a conventional single-effect cycle activated by an external steam-ejector loop. A mathematical model of the whole system is developed. Simulations are carried out to study the effect of the major parameters of the hybrid cycle on its performances and in comparison with the conventional cycle. The ejector performance is also investigated. Results show that the entrainment ratio rises with steam pressure and condenser temperature, while it decreases with increasing generator temperature. The effect of the evaporator temperature on ejector performance is negligible. It is shown also that the hybrid cycle exhibits better performances than the corresponding basic cycle. However, the performance improvement is limited to a specific range of the operating parameters. Outside this range, the hybrid system behaves similar to a conventional cycle. Inside this range, the COP increases, reaches a maximum, and then decreases and rejoins the behavior of the basic cycle. The maximum COP, which can be as large as that of a conventional double-effect cycle, about 1, is obtained at lower temperatures than in the case of single-effect cycles.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3