An Efficient Lightweight Cryptographic Instructions Set Extension for IoT Device Security

Author:

El Hadj Youssef Wajih1ORCID,Abdelli Ali1,Dridi Fethi1,Brahim Rim1,Machhout Mohsen1ORCID

Affiliation:

1. Faculty of Sciences of Monastir, Electronics and Micro-Electronic Laboratory (LEME), Monastir 5000, Tunisia

Abstract

The Internet of Things is changing all sectors such as manufacturing, agriculture, city infrastructure, and the automotive industry. All these applications ask for secure processors that can be embedded in the IoT devices. Furthermore, these devices are restricted in terms of computing capabilities, memory, and power consumption. A major challenge is how to meet the need for security in such resource-constrained devices. This paper presents a customized version of LEON3, the ReonV RISCV (Reduced Instruction Set Computer-five) processor, dedicated for IoT applications that has strong effective security mechanisms built in at the design stage. Firstly, efficient lightweight cipher designs are elaborated and validated. Then, the proposed cryptographic instructions (PRESENT and PRINCE) are integrated into the default instruction set architecture of the ReonV processor core. The instruction set extensions (ISE) of lightweight cipher modules can be instantiated in software routines exactly as the instructions of the base architecture. A single instruction is needed to implement a full lightweight cryptographic instruction. The customized ReonV RISCV processor is implemented on a Xilinx FPGA platform and is evaluated for Slice LUTs plus FF-pairs, frequency, and throughput. Obtained results show that our proposed concepts not only can achieve good encryption results with high performance and reduced cost but also are secure enough to resist against the most common attacks.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference43 articles.

1. Internet of Things: Applications and Challenges in Technology and Standardization

2. Vision and challenges for realising the internet of Things;H. Sundmaeker;cluster of European research projects on the internet of things—CERP IoT,2010

3. Internet of Things (IoT): A vision, architectural elements, and future directions

4. Report on lightweight cryptography;A. M. Kerry;National Institute of Standards and Technology Internal Report,2017

5. Compact Implementations of HIGHT Block Cipher on IoT Platforms

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3