Affiliation:
1. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
Abstract
Emergencies have a significant impact on the passenger flow of urban rail transit. It is of great practical significance to accurately predict the urban rail transit passenger flow and carry out research on its temporal and spatial distributions under emergency conditions. Urban rail transit operating units currently use video surveillance information mainly to process emergencies and rarely use computer vision technology to analyze passenger flow information collected. Accordingly, this paper proposes a passenger flow-based temporal and spatial distribution model for urban rail transit emergencies based on the CPT. First, this paper clarifies the categories and classification of urban rail transit emergencies, analyzes the factors affecting passenger route selection, and establishes a generalized travel cost model for passengers under emergencies. Second, this paper establishes a passenger route choice behavior model for urban rail transit based on the cumulative prospect theory. Finally, taking Beijing as an example, this paper analyzes passenger travel behavior under emergencies based on multiple logistic regression models and analyzes the impact of emergencies on rail transit travel behavior. The research results show that the cumulative prospect theory can better describe the route choice behavior of rail transit passengers under emergencies than the existing models, and this model is of great significance for handling urban rail transit emergencies. The model proposed in this paper can provide a theoretical basis for the government and relevant departments to formulate traffic management measures.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献