Machine Learning as a Downscaling Approach for Prediction of Wind Characteristics under Future Climate Change Scenarios

Author:

Yeganeh-Bakhtiary AbbasORCID,EyvazOghli HosseinORCID,Shabakhty NaserORCID,Kamranzad BaharehORCID,Abolfathi SoroushORCID

Abstract

Assessment of climate change impacts on wind characteristics is crucial for the design, operation, and maintenance of coastal and offshore infrastructures. In the present study, the Model Output Statistics (MOS) method was used to downscale a Coupled Model Intercomparison Project Phase 5 (CMIP5) with General Circulation Model (GCM) results for a case study in the North Atlantic Ocean, and a supervised machine learning method (M5’ Decision Tree model) was developed for the first time to establish a statistical relationship between predicator and predicant. To do so, the GCM simulation results and altimeter remote sensing data were employed to examine the capabilities of the M5’DT model in predicting future wind speed and identifying spatiotemporal trends in wind characteristics. For this purpose, three classes of M5′ models were developed to study the annual, seasonal, and monthly variations of wind characteristics. The developed decision tree (DT) models were employed to statistically downscale the Beijing Normal University Earth System Model (BNU‐ESM) global climate model output. The M5′ models are calibrated and successfully validated against the GCM simulation results and altimeter remote sensing data. All the proposed models showed firm outputs in the training section. Predictions from the monthly model with a 70/30 training to test ratio demonstrated the best model performance. The monthly prediction model highlighted the decreasing trend in wind speed relative to the control period in 2030 to 2040 for the case study location and across all three future climate change scenarios tested within this study. This reduction in wind speed reduces wind energy by 13% to 19%.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3