Implementing the Galerkin Method Associated with the Shifted Vieta-Lucas Polynomials for Studying Numerically the Bionanofluid Flow Which Is Saturated by Gyrotactic Microorganisms over a Slippery Stretching Sheet

Author:

Khader M. M.12ORCID,Babatin M. M.1ORCID,Megahed Ahmed M.2ORCID,Eid A.34ORCID

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11566, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt

3. Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11566, Saudi Arabia

4. Department of Physics, Faculty of Science, Cairo University, Giza, Egypt

Abstract

Heat transfer is a critical function in many technical, industrial, home, and commercial structures. As a result, the purpose of this study is to investigate the effects of slip velocity and variable fluid characteristics on Casson bionanofluid flow across a stretching sheet that has been saturated by gyrotactic microorganisms. The suggested system will be converted to a computationally tractable form using the Galerkin method. The shifted Vieta-Lucas polynomials are then used as basis functions on the provided domain to solve the nonlinear system of ordinary differential equations that has been constructed (ODEs). The results are presented in the form of graphs and tables to assess the impact of the problem’s governing parameters. The estimated solutions produced by using the proposed techniques were physically acceptable and accurate. The current outcomes are confirmed by comparing them to the available literature. It appears that the temperature distribution is enhanced whereas the velocity distribution declines, caused by rising values of the magnetic parameter, slip parameter, and Casson parameter. Also, the local Nusselt number escalates with the strength of the viscosity parameter while the friction drag decays with the same parameter. In addition, the effectiveness and accuracy of the proposed method are satisfied by computing and the residual error function.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3