Multiscale Efficient Channel Attention for Fusion Lane Line Segmentation

Author:

Liu Kang1ORCID,Gao Xin1ORCID

Affiliation:

1. School of Mechanical Electronic & Information Engineering, China University of Mining & Technology, Beijing, Beijing 100 083, China

Abstract

The use of multimodal sensors for lane line segmentation has become a growing trend. To achieve robust multimodal fusion, we introduced a new multimodal fusion method and proved its effectiveness in an improved fusion network. Specifically, a multiscale fusion module is proposed to extract effective features from data of different modalities, and a channel attention module is used to adaptively calculate the contribution of the fused feature channels. We verified the effect of multimodal fusion on the KITTI benchmark dataset and A2D2 dataset and proved the effectiveness of the proposed method on the enhanced KITTI dataset. Our method achieves robust lane line segmentation, which is 4.53% higher than the direct fusion on the precision index, and obtains the highest F2 score of 79.72%. We believe that our method introduces an optimization idea of modal data structure level for multimodal fusion.

Funder

Natural Science Foundation of Shanxi Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference36 articles.

1. 3D-LaneNet: End-to-End 3D Multiple Lane Detection

2. Geometric Constrained Joint Lane Segmentation and Lane Boundary Detection

3. Lanenet: real-time lane detection networks for autonomous driving;Ze Wang

4. Weakly Supervised Deep Semantic Segmentation Using CNN and ELM with Semantic Candidate Regions

5. Medical image segmentation algorithm based on optimized convolutional neural network-adaptive dropout depth calculation;An Feng-Ping;Complexity,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3