Elucidation of the Key Therapeutic Targets and Potential Mechanisms of Marmesine against Knee Osteoarthritis via Network Pharmacological Analysis and Molecular Docking

Author:

Song Hanbing1,Liu Hongpeng1,Li Xiaodong1,Lv Bing1,Tang Zonghan1,Chen Qipeng1,Zhang Danqi1ORCID,Wang Fei1ORCID

Affiliation:

1. Heilongjiang University of Traditional Chinese Medicine, Harbin, 150000 Heilongjiang Province, China

Abstract

Background. Marmesine, a major active ingredient isolated from Radix Angelicae biseratae (Duhuo), has been reported to have multiple pharmacological activities. However, its therapeutic effects against knee osteoarthritis (OA) remain poorly investigated. The present study is aimed at uncovering the core targets and signaling pathways of marmesine against osteoarthritis using a combined method of bioinformatics and network pharmacology. Methods. We utilized SwissTargetPrediction and PharmMapper to collect the potential targets of marmesine. OA-related differentially expressed genes (DEGs) were identified from GSE98918 dataset. Then, the intersection genes between DEGs and candidate genes of marmesine were subjected to protein-protein interaction (PPI) network construction and functional enrichment analysis. The core targets were verified using the molecular docking technology. Results. A total of 320 marmesine-related genes and 5649 DEGs and 60 ingredient-disease targets between them were identified. The results of functional enrichment analyses revealed that response to oxygen levels, neuroinflammatory response, PI3K-Akt signaling pathway, MAPK signaling pathway, FoxO signaling pathway, and osteoclast differentiation was identified as the potential mechanisms of marmesine against OA. EGFR, CASP3, MMP9, PPARG, and MAPK1 served as hub genes regulated by marmesine in the treatment of OA, and the molecular docking further verified the results. Conclusion. Marmesine exerts the therapeutic effects against OA through multitarget and multipathways, in which EGFR, CASP3, MMP9, PPARG, and MAPK1 might be hub genes. Our research indicated that the combination of bioinformatics and network pharmacology could serve as an effective approach for investigating the potential mechanisms of natural product.

Funder

Heilongjiang University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3