Affiliation:
1. Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
Abstract
Spectral properties of a special class of infinite dimensional Dirac operatorsQ(α)on the abstract boson-fermion Fock spaceℱ(ℋ,𝒦)associated with the pair(ℋ,𝒦)of complex Hilbert spaces are investigated, whereα∈Cis a perturbation parameter (a coupling constant in the context of physics) and the unperturbed operatorQ(0)is taken to be a free infinite dimensional Dirac operator. A variety of the kernel ofQ(α)is shown. It is proved that there are cases where, for all sufficiently large|α|withα<0,Q(α)has infinitely many nonzero eigenvalues even ifQ(0)has no nonzero eigenvalues. Also Fredholm property ofQ(α)restricted to a subspace ofℱ(ℋ,𝒦)is discussed.
Funder
Japan Society for the Promotion of Science