Rapid Identification of Nine Easily Confused Mineral Traditional Chinese Medicines Using Raman Spectroscopy Based on Support Vector Machine

Author:

Ming Jing1ORCID,Chen Long12ORCID,Cao Yan1,Yu Chi1ORCID,Huang Bi-Sheng1ORCID,Chen Ke-Li1ORCID

Affiliation:

1. Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China

2. Xiangyang Central Hospital, Xiangyang, Hubei 441021, China

Abstract

Mineral traditional Chinese medicines (TCMs) are natural minerals, mineral processing products, and some fossils of animals or animal bones that can be used as medicines. Mineral TCMs are a characteristic part of TCMs and play a unique role in the development of TCMs. Mineral TCMs are usually identified according to their morphological properties such as shape, color, or smell, but it is difficult to separate TCMs that are similar in appearance or smell. In this study, the feasibility of using Raman spectroscopy combined with support vector machine (SVM) for rapid identification of nine easily confused mineral TCMs, i.e., borax, gypsum fibrosum, natrii sulfas exsiccatus, natrii sulfas, alumen, sal ammoniac, quartz, calcite, and yellow croaker otolith, was investigated. Initially, two methods, characteristic intensity data extraction and principal component analysis (PCA), were performed to reduce the dimensionality of spectral data. The identification model was subsequently built by the SVM algorithm. The 3-fold cross validation (3-CV) accuracy of the SVM model established based on extracting characteristic intensity data from spectra pretreated by first derivation was 98.61%, and the prediction accuracies of the training set and validation set were 100%. As for the PCA-SVM model, when the spectra pretreated by vector normalization and the number of principal components (NPC) is 7, the 3-CV accuracy and prediction accuracies all reached 100%. Both models have good performance and strong prediction capacity. These results demonstrate that Raman spectroscopy combined with a powerful SVM algorithm has great potential for providing an effective and accurate identification method for mineral TCMs.

Funder

Wuhan Special Fund of Biotechnology and New Medicine from Development Action Plan of High-Tech Industry

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3