Detecting and Classifying Android Malware Using Static Analysis along with Creator Information

Author:

Kang Hyunjae1,Jang Jae-wook1,Mohaisen Aziz2,Kim Huy Kang1ORCID

Affiliation:

1. Graduate School of Information Security, Korea University, Seoul 136-713, Republic of Korea

2. Verisign Labs, Reston, VA 20190, USA

Abstract

Thousands of malicious applications targeting mobile devices, including the popular Android platform, are created every day. A large number of those applications are created by a small number of professional underground actors; however previous studies overlooked such information as a feature in detecting and classifying malware and in attributing malware to creators. Guided by this insight, we propose a method to improve the performance of Android malware detection by incorporating the creator's information as a feature and classify malicious applications into similar groups. We developed a system that implements this method in practice. Our system enables fast detection of malware by using creator information such as serial number of certificate. Additionally, it analyzes malicious behaviors and permissions to increase detection accuracy. The system also can classify malware based on similarity scoring. Finally, we showed detection and classification performance with 98% and 90% accuracy, respectively.

Funder

Ministry of Science, ICT and Future Planning

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3