Affiliation:
1. Department of Oral and Maxillofacial Surgery, Jiamusi University Affiliated Stomatological Hospital, Jiamusi, China
Abstract
The aim of this research was to assess the function of microribonucleic acid (miR)-195 in the apoptosis and proliferation of oral squamous cell carcinoma (OSCC) cells as well as its action mechanism. The downstream target protein of miR-195 was predicted using the biological software. A quantitative polymerase chain reaction (qPCR) was implemented to examine the changes in expressions of miR-195 and its target protein toll-like receptor 4 (TLR4) in OSCC cell lines (TSCCA, Tca8223, Tb3.1, and CAL-27) and normal adult human gingival fibroblasts (HGFs), and the relation between their expressions was assessed. The expressions of phosphorylated proteins in nuclear factor-κB (NF-κB) pathway were determined through western blotting. miR-195 was expressed at a noticeably lower level in four OSCC cells than in HGFs, and the lowest level appeared in CAL-27 cells. Compared with miR-195 control, the miR-195 mimic could obviously raise the expression of miR-195. In CAL-27 cells with high expression of miR-195, the proliferation was inhibited and the apoptosis was evidently enhanced. OSCC cells exhibited evidently reduced protein and mRNA expression of TLR4, and miR-195 expression was inversely associated with TLR4 expression. It was uncovered from the dual-luciferase reporter assay that cells with wild-type TLR4 had prominently weakened luciferase activity relative to cells with mutant-type TLR4, revealing that the direct target of miR-195 is TLR4. The NF-κB pathway was impeded in cells that lowly expressed TLR4. miR-195 blocks the NF-κB pathway via inhibiting the expression of TLR4 in OSCC cells, thereby exerting an antitumor effect.
Funder
Notch Signaling Pathway Regulates the Proliferation and Differentiation of Human Dental Sac Cells
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献