Combustion Synthesis of Lanthanum Substituted LiNiO2Using Hexamine as a Fuel

Author:

Kayalvizhi M.1,Berchmans L. John2

Affiliation:

1. Department of Chemistry, A.V.V.M. Sri Pushpam College, Poondi-613503, India

2. Central Electrochemical Research Institute, Karaikudi-630006, India

Abstract

Lithium nickelate and its lanthanum substituted compound have been successfully prepared by combustion synthesis process using LiNO3, Ni(NO3)2.6H2O and La(NO3)3.6H2O. Hexamine is used as fuel. The physicochemical properties of the powders were investigated by thermal analysis (TGA/DTA). The crystalline powders were characterized for their phase identification using x-ray diffraction analysis (XRD). FT-IR spectroscopy was used to study the local structure of the oxide environment. The morphological features of the powders were characterized by scanning electron microscopy (SEM). DTA analysis reveals the evolution of an exothermic peak at 465oC indicating the rapid decomposition of the hexamine and dissociation of nitrate salts, forming the final compound lithium nickealte. The XRD pattern reveals the rhombohedral structure of LiNiO2with trigonal symmetry comprising of two interpenetrating close packed FCC sub-lattices. The lattice constant values ̒a̓ and ̒c̓ are in good agreement with the reported data. In the FT-IR spectra, vibrational bands are identified in the range of 400-800 cm-1representing the NiO2layer. LiNiO2exhibits a very fine crystalline structure with an irregular morphology. The La substituted LiNiO2powder has shown a smooth-edged polyhedral structure with an average particle size of 5-10 μm.

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3