EPPSA: Efficient Privacy-Preserving Statistical Aggregation Scheme for Edge Computing-Enhanced Wireless Sensor Networks

Author:

Tao Yunting1ORCID,Kong Fanyu1ORCID,Yu Jia2,Xu Qiuliang1ORCID

Affiliation:

1. School of Software, Shandong University, Jinan 250101, China

2. College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

Abstract

In edge computing-enhanced wireless sensor networks (WSNs), multidimensional data aggregation can optimize the utilization of computation resources for data collection. How to improve the efficiency of data aggregation has gained considerable attention in both academic and industrial fields. This article proposes a new efficient privacy-preserving statistical aggregation scheme (EPPSA) for WSNs, in which statistical data can be calculated without exposing the total number of sensor devices to control center. The EPPSA scheme supports multiple statistical aggregation functions, including arithmetic mean, quadratic mean, weighted mean, and variance. Furthermore, the EPPSA scheme adopts the modified Montgomery exponentiation algorithms to improve the aggregation efficiency in the edge aggregator. The performance evaluation shows that the EPPSA scheme gets higher aggregation efficiency and lower communication load than the existing statistical aggregation schemes.

Funder

Major Scientific and Technological Innovation Project of Shandong Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3