Metabolic Syndrome Prediction Models Using Machine Learning and Sasang Constitution Type

Author:

Park Ji-Eun1ORCID,Mun Sujeong1ORCID,Lee Siwoo1ORCID

Affiliation:

1. Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea

Abstract

Background. Machine learning may be a useful tool for predicting metabolic syndrome (MetS), and previous studies also suggest that the risk of MetS differs according to Sasang constitution type. The present study investigated the development of MetS prediction models utilizing machine learning methods and whether the incorporation of Sasang constitution type could improve the performance of those prediction models. Methods. Participants visiting a medical center for a health check-up were recruited in 2005 and 2006. Six kinds of machine learning were utilized (K-nearest neighbor, naive Bayes, random forest, decision tree, multilayer perceptron, and support vector machine), as was conventional logistic regression. Machine learning-derived MetS prediction models with and without the incorporation of Sasang constitution type were compared to investigate whether the former would predict MetS with higher sensitivity. Age, sex, education level, marital status, body mass index, stress, physical activity, alcohol consumption, and smoking were included as potentially predictive factors. Results. A total of 750/2,871 participants had MetS. Among the six types of machine learning methods investigated, multiplayer perceptron and support vector machine exhibited the same performance as the conventional regression method, based on the areas under the receiver operating characteristic curves. The naive-Bayes method exhibited the highest sensitivity (0.49), which was higher than that of the conventional regression method (0.39). The incorporation of Sasang constitution type improved the sensitivity of all of the machine learning methods investigated except for the K-nearest neighbor method. Conclusion. Machine learning-derived models may be useful for MetS prediction, and the incorporation of Sasang constitution type may increase the sensitivity of such models.

Funder

Korea Institute of Oriental Medicine

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3