XGBDeepFM for CTR Predictions in Mobile Advertising Benefits from Ad Context

Author:

An Han1ORCID,Ren Jifan1ORCID

Affiliation:

1. School of Economics and Management, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

The problem of click-through rate (CTR) prediction in mobile advertising is one of the most informative metrics used in mobile business activities, such as profit evaluation and resource management. In mobile advertising, CTR prediction is essential but challenging due to data sparsity. Moreover, existing methods often have difficulty in capturing the different orders of feature interactions simultaneously. In this study, a method was developed to obtain accurate CTR prediction by incorporating contextual features and feature interactions. We initially use extreme gradient boosting (XGBoost) as a feature engineering phase to select highly significant features. The selected features are mobile contextual attributes including time contextual, geography contextual, and other contextual attributes (e.g., weather condition) in actual mobile advertising situations. Our model, XGBoost deep factorization machine- (FM-) supported neutral network (XGBDeepFM), combines the power of XGBoost for feature selection, FM for two-order cross feature interaction, and the deep neural network for high-order feature learning in a united architecture. In a mobile advertising condition, our methods lead to significantly accurate CTR prediction in “wide and deep” type of model. In comparison with existing models, many experiments on commercial datasets show that the XGBDeepFM model has better value of area under curve and improves the effectiveness and efficiency of CTR prediction for mobile advertising.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GMINN: Gate‐enhanced multi‐space interaction neural networks for click‐through rate prediction;Computational Intelligence;2024-06

2. LFDNN: A Novel Hybrid Recommendation Model Based on DeepFM and LightGBM;Entropy;2023-04-10

3. Causality-based CTR prediction using graph neural networks;Information Processing & Management;2023-01

4. CTR Prediction Using Wide & Deep and CCPM;2022 IEEE 19th India Council International Conference (INDICON);2022-11-24

5. Click-through rate prediction in online advertising: A literature review;Information Processing & Management;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3