Electrochemical Behavior and Electronucleation of Copper Nanoparticles from CuCl2·2H2O Using a Choline Chloride-Urea Eutectic Mixture

Author:

Phuong Thao Dao Vu12,Phi Thuy-Linh1,Phi Bui Huu1,Van Hieu Nguyen34ORCID,Tang Nguyen Son5ORCID,Le Manh Tu12ORCID

Affiliation:

1. Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam

2. Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No 01, Dai Co Viet Road, Hanoi, Vietnam

3. Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group, 167 Hoang Ngan, Hanoi 100000, Vietnam

4. Faculty of Electrical and Electronic Engineering, Phenikaa Institute for Advanced Study, Phenikaa University, Yen Nghia, Ha-Dong District, Hanoi, Vietnam

5. Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 10000, Vietnam

Abstract

This work presents a thorough study on the early stage of copper electrodeposition from a choline chloride-urea deep eutectic solvent (DES). Determination of possible species in DES containing Cu2+ ions as the electrolytes has been performed using UV-Vis measurements. Kinetic and thermodynamic aspects of copper electrodeposition on glassy carbon electrode from DES were thoroughly investigated using cyclic voltammetry (CV) and chronoamperometry (CA). Both results from CA and CV have demonstrated that the copper electrodeposition could be performed directly from DES containing a small amount of water by the single potentiostatic step technique. Theoretical approach confirmed that the direct electronucleation of copper nanoparticles in the DES can be described by a model with two contributions, namely, (i) adsorption process and (ii) a three-dimensional (3D) nucleation and diffusion-controlled growth of copper nuclei, to the total current density transients. Kinetic parameters are important for controlling morphology and chemical composition of the obtained nanoparticles, which are verified by surface characterization techniques such as SEM and EDS.

Funder

National Foundation for Science and Technology Development

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3