Personalized Recommendation Model Based on Improved GRU Network in Big Data Environment

Author:

Guo Hui1ORCID,Guo Zheng2,Liu Zhihong3

Affiliation:

1. Shanxi Vocational College of Tourism, Taiyuan, Shanxi 030031, China

2. China National Pharmaceutical Group Shanxi Rfl Pharmaceutical Co.,Ltd., Taiyuan, Shanxi 030012, China

3. Zhengzhou College of Finance and Economics, Zhengzhou, Henan 450044, China

Abstract

To address the diversity of user preferences and dynamic changes of interests in the personalized recommendation scenario, a personalized recommendation model based on the improved gated recurrent unit (GRU) network in a big data environment is proposed. First, in order to deal with outliers in sequence recommendation, context awareness sequence recommendation is introduced, and the dynamic changes of users’ interests are modeled by redefining the update gate and the reset gate of the GRU. Then, the duration information about how long users browse each item is processed and transformed to obtain the duration attention factor of each recommended item. And the duration attention factors and the item information are together used as the input of the proposed model for training and prediction. Finally, the auxiliary loss function is introduced to make up for the shortcomings of the traditional negative logarithmic likelihood function, and a super-parameter is applied to combine the auxiliary loss function with the negative logarithmic likelihood function so as to enhance the relationship between the interest representation and the accuracy of recommendation. Experiments show that the root mean square error (RMSE) of the proposed method in the Criteo dataset and MovieLens-1M dataset is 0.7257 and 0.7869, respectively, and the mean absolute error (MAE) is 0.5147 and 0.5893, respectively, which are better than those of the comparison methods. Therefore, the proposed method significantly outperforms the comparison methods in improving the accuracy of personalized recommendation in the system.

Funder

Department of Education, Shanxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Reference29 articles.

1. Meta-learning for Resampling Recommendation systems;D. Smolyakov

2. Recommendation systems for software engineering;M. Robillard;IEEE software,2009

3. Basic Approaches in Recommendation Systems

4. Recommendation systems: a review;A. H. N. Rafsanjani;International Journal of Computational Engineering Research,2013

5. A systematic review: machine learning based recommendation systems for e-learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3