Interaction Study of Oxygen and Iron-Sulfur Clusters Based on the Density Functional Theory

Author:

Gao Jiancun12ORCID,Sui Hongbin1,Wu Siyuan12ORCID,Zhang Renyou12,Zhang Mengxin1,Cui Bolun1,Chu Huilin1

Affiliation:

1. School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China

2. Beijing Academy of Safety Engineering and Technology, Beijing 102617, China

Abstract

For the petrochemical industry, the spontaneous burning of iron sulfide compounds has been a major issue. In this study, XRD characterization of samples of iron sulfide compounds with spontaneous combustion tendency revealed that amorphous FeS was the primary constituent of the samples. A molecular simulation was used to build an amorphous FeS cluster model, and the density functional theory was used to examine the adsorption and reactivity characteristics of Fe4S4 clusters with O2. Different adsorption structures are generated by considering different adsorption sites and the electronic characteristics of each adsorption structure are evaluated. The results show that O2 prefers to adsorb around Fe atoms and has repulsion with S atoms, and the adsorption energy is maximum when two O atoms are co-adsorbed around Fe atoms, which is 198.13 kJ/mol. After adsorption charge, oxygen is in the superoxide state. The calculation of the reaction path divides the reaction process into different stages and considers different reaction routes. A thorough evaluation of the energy barriers and reaction energies of the two exothermic reactions leads to the conclusion that reaction path 1 is the optimal reaction path, and the reaction can release a total of 582.76 kJ/mol of heat. According to calculations, dimeric sulfur S2 must absorb a large part amount of energy in order to conduct the oxidation process. However, because S2 is present in the Fe4S4 reaction system, it may start the oxidation reaction by absorbing heat from the system and releasing 470.94 kJ/mol of heat. As a result, we conclude that this spontaneous exothermic reaction is a major cause of iron sulfide compounds spontaneous combustion. The thermal oxidation of the dimeric sulfur S2 generated in the reaction system releases heat that aggregates with the heat from the Fe4S4 cluster’s oxidation reaction system, eventually causing spontaneous combustion as a result of the heat’s continual buildup. In this study, we explore the reason for the extremely easy oxidation and spontaneous burning of iron sulfide compounds from a microscopic perspective to provide a theoretical foundation for the prevention and control of iron sulfide compound spontaneous combustion in the petrochemical sector.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3