HPLC Method for Quantification of Caffeine and Its Three Major Metabolites in Human Plasma Using Fetal Bovine Serum Matrix to Evaluate Prenatal Drug Exposure

Author:

Lopez-Sanchez Rosa del Carmen1,Lara-Diaz Victor Javier1,Aranda-Gutierrez Alejandro1ORCID,Martinez-Cardona Jorge A.1ORCID,Hernandez Jose A.1ORCID

Affiliation:

1. Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL, Mexico

Abstract

Caffeine is recognized as the first-line therapeutic agent for apnea of prematurity. The dosage regimen is 10 mg/kg loading dose and 2.5 mg/kg maintenance dose. However, the plasma concentration achieved, not always, is therapeutically useful. It makes necessary to increase the doses to reach plasma concentration up to 30 or 35 μg/mL or even higher to attain therapeutic effect. To study why neonates have these differences, and whether these effects are linked to prenatal caffeine exposure, we had to develop an analytical method for an accurate measurement of caffeine and metabolites concentration. The analysis was carried out using fetal bovine serum (FBS) as biological matrix in a high-performance liquid chromatography with an ultraviolet detector method. This method allows acceptable chromatographic resolution between analytes in 15 minutes. It was validated and proved to be linear in the 0.1–40 µg/mL range for caffeine, paraxanthine, theobromine, and theophylline in the same chromatographic analysis. Accuracy for quality control samples for intra- and interday assays was ranged from 96.5 to 105.2% and 97.1 to 106.2%. Precision had CV no more than 10% in all concentration levels for all analytes. No differences were observed between quantification in human and FBS. This method was applied to quantify plasma drug concentration in mothers and their newborns in a Mexican northeast population. In our study, we confirmed self-reported caffeine maternal intake in 85.2% (n=23); meanwhile, in their newborn’s plasma, it was detected only in 78% (n=21). Caffeine plasma concentrations in mother and newborn had a linear relationship, and no differences were observed between groups (mothers versus children). These results suggest that our analytical method and substitution of biological matrix was linear, precise, and accurate for caffeine quantification and could be used for measuring prenatal exposure and let us to study, in the future, concentration differences observed during apnea clinical treatment.

Funder

Tecnologico de Monterrey Fund, GEE Investigación en Cáncer

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3