Robust Visual Correlation Tracking

Author:

Zhang Lei12,Wang Yanjie1,Sun Honghai1,Yao Zhijun1,He Shuwen3

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. North Automatic Control Technology Research Institute, Taiyuan 030006, China

Abstract

Recent years have seen greater interests in the tracking-by-detection methods in the visual object tracking, because of their excellent tracking performance. But most existing methods fix the scale which makes the trackers unreliable to handle large scale variations in complex scenes. In this paper, we decompose the tracking into target translation and scale prediction. We adopt a scale estimation approach based on the tracking-by-detection framework, develop a new model update scheme, and present a robust correlation tracking algorithm with discriminative correlation filters. The approach works by learning the translation and scale correlation filters. We obtain the target translation and scale by finding the maximum output response of the learned correlation filters and then online update the target models. Extensive experiments results on 12 challenging benchmark sequences show that the proposed tracking approach reduces the average center location error (CLE) by 6.8 pixels, significantly improves the performance by 17.5% in the average success rate (SR) and by 5.4% in the average distance precision (DP) compared to the second best one of the other five excellent existing tracking algorithms, and is robust to appearance variations introduced by scale variations, pose variations, illumination changes, partial occlusion, fast motion, rotation, and background clutter.

Funder

National High Technology Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3