Affiliation:
1. Medical Informatics R&D Centre, University of Pannonia, Egyetem Utca 10, Veszprém 8200, Hungary
Abstract
The automated detection of stress is a central problem for ambient assisted living solutions. The paper presents the concepts and results of two studies targeted at stress detection with a low cost heart rate sensor, a chest belt. In the device validation study (n=5), we compared heart rate data and other features from the belt to those measured by a gold standard device to assess the reliability of the sensor. With simple synchronization and data cleaning algorithm, we were able to select highly (>97%) correlated, low average error (2.2%) data segments of considerable length from the chest data for further processing. The protocol for the clinical study (n=46) included a relax phase followed by a phase with provoked mental stress, 10 minutes each. We developed a simple method for the detection of the stress using only three time-domain features of the heart rate signal. The method produced accuracy of 74.6%, sensitivity of 75.0%, and specificity of 74.2%, which is impressive compared to the performance of two state-of-the-art methods run on the same data. Since the proposed method uses only time-domain features, it can be efficiently implemented on mobile devices.
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献