Affiliation:
1. Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
2. Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
Abstract
Network-on-Chip (NoC) is fast emerging as an on-chip communication alternative for many-core System-on-Chips (SoCs). However, designing a high performance low latency NoC with low area overhead has remained a challenge. In this paper, we present a two-clock-cycle latency NoC microarchitecture. An efficient request masking technique is proposed to combine virtual channel (VC) allocation with switch allocation nonspeculatively. Our proposed NoC architecture is optimized in terms of area overhead, operating frequency, and quality-of-service (QoS). We evaluate our NoC against CONNECT, an open source low latency NoC design targeted for field-programmable gate array (FPGA). The experimental results on several FPGA devices show that our NoC router outperforms CONNECT with 50% reduction of logic cells (LCs) utilization, while it works with 100% and 35%~20% higher operating frequency compared to the one- and two-clock-cycle latency CONNECT NoC routers, respectively. Moreover, the proposed NoC router achieves 2.3 times better performance compared to CONNECT.
Funder
Ministry of Higher Education, Malaysia
Subject
Hardware and Architecture
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献