On the Optimal Control of Intervention Strategies for Hepatitis B Model

Author:

Atte Momoh Abdulfatai1ORCID,Audu Abubakar1ORCID,Dione Déthié2ORCID,Ali Inalegwu Michael3ORCID

Affiliation:

1. Department of Mathematics, Modibbo Adama University, Yola, Nigeria

2. Gaston Berger University, Saint-Louis, Senegal

3. Department of Mathematics and Statistics, Federal University Wukari, Nigeria

Abstract

Hepatitis B is one of the leading causes of morbidity and mortality, affecting hundreds of millions of people worldwide. Thus, this paper focuses on three control measures as the best way to intervene against the hepatitis B viral infection. These measures are condom use, testing and treatment, and vaccination to stop the disease from spreading over a community. The model comprises seven (7) compartments that include susceptible individuals, latent individuals, acute-infected individuals, chronic-infected individuals, infected by carrier individuals, recovered individuals from the disease, and the vaccinated population. We mathematically established a nonlinear differential equation to study the dynamics of the model. The disease-free equilibrium (DFE) and endemic equilibrium (EE) are reached. The basic reproduction numbers, R 0 A , R 0 H , and R 0 C , determine the transmission of the disease and thus are gotten. We perform sensitivity analysis on the reproduction numbers to identify the factors that affect the reproduction numbers. The results of the sensitivity analysis paved a way for introducing a controlled system which was solved using Pontryagin’s maximum principle (PMP) and the optimality system got. The optimality system was then solved numerically using the forward and backward sweep approach, and graphs were generated, establishing the conditions for local and global stability of the disease-free equilibrium using the Routh-Hurwitz criterion and Castillo-Chavez approach, respectively. We also used Pontryagin’s maximum principle to determine the optimality system. The result of the analysis of the stability of the disease-free equilibrium states that hepatitis B virus can be completely wiped out if the rate of infection is kept at a number less than unity. A numerical simulation of the model was carried out and showed that hepatitis B virus transmission can best be controlled when condom use, testing and treatment, and vaccination are implemented.

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3