Fault Size Estimation of Bearings Using Multiple Decomposition Techniques with Artificial Neural Network

Author:

Mishra Suchi1ORCID,Dubey Rahul2,Swami Preety D.3,Jain Alok1

Affiliation:

1. Department of Electronics and Instrumentation Engineering, SATI, Vidisha, India

2. Department of Electronics Engineering, MITS, Gwalior, India

3. Department of Electronics and Communication Engineering, UIT RGPV, Bhopal, India

Abstract

A running machine generates multi-frequency vibration signals which can be captured by accelerometers. Empirical mode decomposition, wavelet decomposition, and wavelet packet decomposition are the commonly used methods to decompose the multi-frequency signal. Quick fault classification, accurate signal decomposition, and fault size detection are still a problem in machines with rotary components. In the proposed work, fault diameter in rotary part of machine is detected and classified using the machine learning methods. In the first stage, we have employed empirical mode decomposition (EMD) for high-frequency noise removal. Residue signal is obtained by removing first IMF from base signal considering first IMF as a high-frequency noisy signal, followed by wavelet decomposition. Entropy of the wavelet coefficient obtained from 3rd level decomposition of residue signal is calculated which acts as an input parameter to the machine learning techniques to determine the diameter for fault. Three different sets have been taken for inner race, outer race, and ball race correspondingly. The proposed method classifies and detects the fault diameter up to 99.5%. The proposed method can be used for different types of continuous as well as discrete wavelets.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3