Relationship-Oriented Software Defined AS-Level Fast Rerouting for Multiple Link Failures

Author:

Li Chunxiu1ORCID,Li Xin1,Li Ke1,Huang Jiafu2,Feng Zhansheng3,Chen Shanzhi14,Zhang Hong1,Shi Yulong1

Affiliation:

1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Beijing BDA Network & Information Co. Ltd., Beijing 100176, China

3. Luohe Radio Administration Bureau of Henan Province, Luohe 462000, China

4. State Key Lab of Wireless Mobile Communication, China Academy of Telecommunication Technology, Beijing 100083, China

Abstract

Large-scale deployments of mission-critical services have led to stringent demands on Internet routing, but frequently occurring network failures can dramatically degrade the network performance. However, Border Gateway Protocol (BGP) can not react quickly to recover from them. Although extensive research has been conducted to deal with the problem, the multiple failure scenarios have never been properly addressed due to the limit of distributed control plane. In this paper, we propose a local fast reroute approach to effectively recover from multiple link failures in one administrative domain. The principle of Software Defined Networking (SDN) is used to achieve the software defined AS-level fast rerouting. Considering AS relationships, efficient algorithms are proposed to automatically and dynamically find protection paths for multiple link failures; then OpenFlow forwarding rules are installed on routers to provide data forwarding continuity. Our approach is able to ensure applicability to ASes with flexibility and adaptability to multiple link failures, contributing toward improving the network performance. Through experimental results, we show that our proposal provides effective failure recovery and does not introduce significant control overhead to the network.

Funder

National Natural Science Foundation of China, Distinguished Young Scholar

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3