Epoxyeicosatrienoic Acids Inhibit the Activation of Murine Fibroblasts by Blocking the TGF-β1-Smad2/3 Signaling in a PPARγ-Dependent Manner

Author:

Tao Jia-Hao1ORCID,Liu Tian2,Zhang Chen-Yu1,Zu Cheng1,Yang Hui-Hui1,Liu Yu-Biao1,Yang Jin-Tong1,Zhou Yong1ORCID,Guan Cha-Xiang1ORCID

Affiliation:

1. Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China

2. College of Physiology Education, Chongqing University of Arts and Science, Chongqing 412160, China

Abstract

Background. Epoxyeicosatrienoic acids (EETs), the metabolite of arachidonic acid by cytochrome P450 (CYP), reportedly serve as a vital endogenous protective factor in several chronic diseases. EETs are metabolized by soluble epoxide hydrolase (sEH). We have observed that prophylactic blocking sEH alleviates bleomycin- (BLM-) induced pulmonary fibrosis (PF) in mice. However, the underlying mechanism and therapeutic effects of EETs on PF remain elusive. Objective. In this study, we investigated the effect of CYP2J2/EETs on the activation of murine fibroblasts and their mechanisms. Results. we found that administration of the sEH inhibitor (TPPU) 7 days after the BLM injection also reversed the morphology changes and collagen deposition in the lungs of BLM-treated mice, attenuating PF. Fibroblast activation is regarded as a critical role of PF. Therefore, we investigated the effects of EETs on the proliferation and differentiation of murine fibroblasts. Results showed that the overexpression of CYP2J2 reduced the cell proliferation and the expressions of α-SMA and PCNA induced by transforming growth factor- (TGF-) β1 in murine fibroblasts. Then, we found that EETs inhibited the proliferation and differentiation of TGF-β1-treated-NIH3T3 cells and primary murine fibroblasts. Mechanistically, we found that 14,15-EET disrupted the phosphorylation of Smad2/3 murine fibroblasts by activating PPARγ, which was completely abolished by a PPARγ inhibitor GW9662. Conclusion. our study shows that EETs inhibit the activation of murine fibroblasts by blocking the TGF-β1-Smad2/3 signaling in a PPARγ-dependent manner. Regulating CYP2J2-EET-sEH metabolic pathway may be a potential therapeutic option in PF.

Funder

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3