Fuzzy Matching Template Attacks on Multivariate Cryptography: A Case Study

Author:

Li Weijian1ORCID,Huang Xian1,Zhao Huimin1ORCID,Xie Guoliang2,Lu Fuxiang1

Affiliation:

1. School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China

2. Dept of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G11XQ, UK

Abstract

Multivariate cryptography is one of the most promising candidates for post-quantum cryptography. Applying machine learning techniques in this paper, we experimentally investigate the side-channel security of the multivariate cryptosystems, which seriously threatens the hardware implementations of cryptographic systems. Generally, registers are required to store values of monomials and polynomials during the encryption of multivariate cryptosystems. Based on maximum-likelihood and fuzzy matching techniques, we propose a template-based least-square technique to efficiently exploit the side-channel leakage of registers. Using QUAD for a case study, which is a typical multivariate cryptosystem with provable security, we perform our attack against both serial and parallel QUAD implementations on field programmable gate array (FPGA). Experimental results show that our attacks on both serial and parallel implementations require only about 30 and 150 power traces, respectively, to successfully reveal the secret key with a success rate close to 100%. Finally, efficient and low-cost strategies are proposed to resist side-channel attacks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Computing: Threats & Possible Remedies;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

2. Role of Machine Learning in Power Analysis Based Side Channel Attacks on FPGA;2023 International Conference on Robotics and Automation in Industry (ICRAI);2023-03-03

3. Multi-Party Secure Computation of Multi-Variable Polynomials;Bulletin of the South Ural State University. Series "Mathematical Modelling, Programming and Computer Software";2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3