Machine Learning Models for Analysis of Vital Signs Dynamics: A Case for Sepsis Onset Prediction

Author:

Bloch Eli1ORCID,Rotem Tammy1ORCID,Cohen Jonathan23ORCID,Singer Pierre23,Aperstein Yehudit4ORCID

Affiliation:

1. Department of Industrial Engineering and Management, Afeka Academic College of Engineering, Tel Aviv, Israel

2. Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel

3. Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

4. Department of Software Engineering, Afeka Academic College of Engineering, Tel Aviv, Israel

Abstract

Objective. Achieving accurate prediction of sepsis detection moment based on bedside monitor data in the intensive care unit (ICU). A good clinical outcome is more probable when onset is suspected and treated on time, thus early insight of sepsis onset may save lives and reduce costs. Methodology. We present a novel approach for feature extraction, which focuses on the hypothesis that unstable patients are more prone to develop sepsis during ICU stay. These features are used in machine learning algorithms to provide a prediction of a patient’s likelihood to develop sepsis during ICU stay, hours before it is diagnosed. Results. Five machine learning algorithms were implemented using R software packages. The algorithms were trained and tested with a set of 4 features which represent the variability in vital signs. These algorithms aimed to calculate a patient’s probability to become septic within the next 4 hours, based on recordings from the last 8 hours. The best area under the curve (AUC) was achieved with Support Vector Machine (SVM) with radial basis function, which was 88.38%. Conclusions. The high level of predictive accuracy along with the simplicity and availability of input variables present great potential if applied in ICUs. Variability of a patient’s vital signs proves to be a good indicator of one’s chance to become septic during ICU stay.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3