The Study of Subsurface Land Drainage Optimal Design Model

Author:

Bakour Ahmad1ORCID,Zhang Zhanyu1ORCID,Zheng Chengxin2ORCID,A. ALsakran Mohamed3ORCID,Bakir Mohamad4ORCID

Affiliation:

1. College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China

2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

3. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

4. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

Abstract

This paper focused on choosing the best design of subsurface land drainage systems in semiarid areas. The study presented three different soil layers with different hydraulic conductivity and permeability, all layers are below the drain level, and the permeability is increasing with depth. A mathematical model was formulated for the horizontal and vertical drainage optimal design. The result was a nonlinear optimization problem with nonlinear constraints, which required numerical methods for its solution. The purpose of the mathematical model is to find the best values of pipes and tubewells spacing, groundwater table drawdown, and pumps operating hours which leads to a minimum total cost of the subsurface drainage design. A computer code was developed in MATLAB environment and applied to the case study. Results show that the vertical drainage was economically better for the case study drainage network design. And the main factor affecting the mathematical model for both pipe and well drainage was the distance between pipes and tubewells. In addition, considering the lifespan of vertical drainage project, the optimal design involves the minimum possible duration of pumping stations. It is hoped that the proposed optimal mathematical model will present a design methodology by which the costs of all alternative designs can be compared so that the least-cost design is selected.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3