A Novel Denoising Algorithm of Electromagnetic Ultrasonic Detection Signal Based on Improved EEMD Method

Author:

Gong Wenkang1ORCID,Liu Qi1ORCID,Du Wenhao1ORCID,Xu Weichen1ORCID,Wang Gang1ORCID

Affiliation:

1. School of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110003, China

Abstract

In this paper, we propose a new denoising algorithm for electromagnetic ultrasonic signals based on the improved EEMD method, which can adaptively adjust for added noise and average times in different noisy environments, so that the effect of the residual difference of white noise on the results can be eliminated as far as possible. First, the way to add white noise in the EEMD method is processed, and then the permutation entropy algorithm is used to identify the nature of the components obtained during the decomposition. Then the wavelet transform modulus maximum denoising method is used to deal with the IMF components of the high-frequency part obtained before. Finally, the processed IMF results and residual difference are summed up. The results show that after processing, the noise component in the signal is less and the original information is more reserved, which prevents the signal distortion to a great extent and provides more effective data for subsequent processing. In the experiment, the crack defect data collected by the electromagnetic ultrasonic experiment system were processed by the improved EEMD method. Compared with the traditional EEMD method, it can retain the information of crack location more accurately, which proves the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3