Affiliation:
1. Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
2. Laboratory of Molecular Medicine, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
3. Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
Abstract
Microglia, the central nervous system’s innate immune cells, mediate neuroinflammation and are implicated in a variety of neuropathologies. The present study investigated the antineuroinflammatory and neuroprotective effects of Gyejibokryeong-hwan (GBH), a traditional Korean medicine, in lipopolysaccharide- (LPS-) stimulated murine BV2 microglia. BV2 cells were pretreated with GBH, fluoxetine (FXT), or amitriptyline (AMT) for 1 h and then stimulated with LPS (100 ng/mL). The expression levels of nitric oxide (NO), cytokines, and chemokines were determined by the Griess method, ELISA, or real-time PCR. Western blotting was used to measure various transcription factors and mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt activity. GBH significantly reduced the levels of NO, inducible nitric oxide synthase (iNOS), cyclooxygenase- (COX-) 2, tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, macrophage inhibitory protein- (MIP-) 1α, macrophage chemoattractant protein- (MCP-) 1, and IFN-γ inducible protein- (IP-) 10, regulated upon activation normal T cell expressed sequence (RANTES) in a dose-dependent manner. Expression of nuclear factor- (NF-) κB p65 was significantly decreased and phosphorylation of extracellular signal-regulated kinase (Erk), c-Jun NH2-terminal kinase (JNK), and PI3K/Akt by GBH, but not p38 MAPK, was decreased. Furthermore, production of anti-inflammatory cytokine IL-10 was increased and Heme oxygenase-1 (HO-1) was upregulated via the nuclear factor-E2-related factor 2 (NRF2)/cAMP response element-binding protein (CREB) pathway, collectively indicating the neuroprotective effects of GBH. We concluded that GBH may suppress neuroinflammatory responses by inhibiting NF-κB activation and upregulating the neuroprotective factor, HO-1. These results suggest that GBH has potential as anti-inflammatory and neuroprotective agents against microglia-mediated neuroinflammatory disorders.
Funder
Korea Institute of Oriental Medicine
Subject
Complementary and alternative medicine
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献