Using Sequence Mining to Predict Complex Systems: A Case Study in Influenza Epidemics

Author:

Aldhyani Theyazn H. H.1ORCID,Joshi Manish R.2ORCID,AlMaaytah Shahab A.1,Alqarni Ahmed Abdullah3ORCID,Alsharif Nizar4

Affiliation:

1. Community College of Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa, Saudi Arabia

2. School of Computer Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS, India

3. Department of Computer Sciences and Information Technology, Albaha University, Al Bahah, Saudi Arabia

4. Department of Computer Engineering and Science, Albaha University, Al Bahah, Saudi Arabia

Abstract

According to the World Health Organisation, three to five million individuals are infected by influenza, and around 250,000 to 500,000 people die of this infectious disease worldwide. Influenza epidemics pose a serious public health threat. Moreover, graver dangers are encountered with influenza subtypes against which there is little or no preexisting human immunity. Such subtypes of influenza have the potential to cause devastating epidemics. Thus, enhancing surveillance systems for the purpose of detecting influenza epidemics in an early stage can quicken response times and save millions of lives. This paper presents three adapting intelligence models: support vector machine regression (SVMR), artificial neural network using particle swarm optimisation (ANNPSO), and our intelligent time series (INTS) to predict influenza epidemics. The novelty of the current study is that it proposes a new intelligent model to predict influenza outbreaks. The INTS model combines clustering with a time series model to enhance the prediction of influenza outbreaks. The innovation of our proposed model integrates the results obtained from the existing weighted exponential smoothing model with centroids obtained from clustering. We developed a surveillance system for influenza epidemics using Google search queries. The current research is based on a weighted version of the Center for Disease Control and Prevention influenza-like illness activity level obtained from the Center for Disease Control and Prevention data, as well as query data obtained from the Goggle search engine in the USA. The influenza-like illness data was collected from January 4, 2009 (week 1), to December 27, 2015 (week 52), stretching across a total time span of 312 weeks. Google Correlate was used to select search queries related to influenza epidemics. In total, 100 search queries were obtained from Google Correlate, 10 of which were better and more relevant search queries selected in this study. The model was evaluated using online Google search queries collected from Google Correlate. Standard measure performance MSE, RMSE, and MAE were employed to estimate the results of the proposed model. The empirical results of the INTS model showed MSE = 0.003, RMSE = 0.036, and MAE = 0.0185, indicating that the errors of the proposed model are very limited. A comparative model of predicting results between the INTS model, alternative Google Flu Trend (GFT), and autoregression with Google search data is also presented. The proposed model outperformed the existing models.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference49 articles.

1. Overview of influenza urveillance in the United States, centers for disease control and prevention,2019

2. Regional Level Influenza Study with Geo-Tagged Twitter Data

3. Regional Influenza Prediction with Sampling Twitter Data and PDE Model

4. National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic

5. Towards real-time measurement of public epidemic awareness: monitoring influenza awareness through twitter;M. Smith,2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3