Affiliation:
1. Faculty of Mechanical Engineering, Ho Chi Minh University City of Technology and Education, Ho Chi Minh City, Vietnam
2. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
3. Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4. Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Abstract
The gravity balance mechanism plays a vital role in maintaining the equilibrium for robots and assistive devices. The purpose of this paper was to optimize the geometry of a planar spring, which is an essential element of the gravity balance mechanism. To implement the optimization process, a hybrid method is proposed by combining the finite element method, the deep feedforward neural network, and the water cycle algorithm. Firstly, datasets are collected using the finite element method with a full experiment design. Secondly, the output datasets are normalized to eliminate the effects of the difference of units. Thirdly, the deep feedforward neural network is then employed to build the approximate models for the strain energy, deformation, and stress of the planar spring. Finally, the water cycle algorithm is used to optimize the dimensions of the planar spring. The results found that the optimal geometries of the spring include the length of 45 mm, the thickness of 1.029 mm, the width of 9 mm, and the radius of 0.3 mm. Besides, the predicted results determined that the strain energy, the deformation, and the stress are 0.01123 mJ, 33.666 mm, and 79.050 MPa, respectively. The errors between the predicted result and the verifying results for the strain energy, the deformation, and the stress are about 1.87%, 1.69%, and 3.06%, respectively.
Funder
HCMC University of Technology and Education
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献