Development and Optimization for a New Planar Spring Using Finite Element Method, Deep Feedforward Neural Networks, and Water Cycle Algorithm

Author:

Le Chau Ngoc1,Le Hieu Giang1,Dang Van Anh2,Dao Thanh-Phong34ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Ho Chi Minh University City of Technology and Education, Ho Chi Minh City, Vietnam

2. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

3. Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

4. Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

The gravity balance mechanism plays a vital role in maintaining the equilibrium for robots and assistive devices. The purpose of this paper was to optimize the geometry of a planar spring, which is an essential element of the gravity balance mechanism. To implement the optimization process, a hybrid method is proposed by combining the finite element method, the deep feedforward neural network, and the water cycle algorithm. Firstly, datasets are collected using the finite element method with a full experiment design. Secondly, the output datasets are normalized to eliminate the effects of the difference of units. Thirdly, the deep feedforward neural network is then employed to build the approximate models for the strain energy, deformation, and stress of the planar spring. Finally, the water cycle algorithm is used to optimize the dimensions of the planar spring. The results found that the optimal geometries of the spring include the length of 45 mm, the thickness of 1.029 mm, the width of 9 mm, and the radius of 0.3 mm. Besides, the predicted results determined that the strain energy, the deformation, and the stress are 0.01123 mJ, 33.666 mm, and 79.050 MPa, respectively. The errors between the predicted result and the verifying results for the strain energy, the deformation, and the stress are about 1.87%, 1.69%, and 3.06%, respectively.

Funder

HCMC University of Technology and Education

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3