Affiliation:
1. Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea
2. School of Information Convergence, Kwangwoon University, Seoul 01897, Republic of Korea
Abstract
Multiaccess edge computing (MEC) has emerged as a promising technology for time-sensitive and computation-intensive tasks. With the high mobility of users, especially in a vehicular environment, computational task migration between vehicular edge computing servers (VECSs) has become one of the most critical challenges in guaranteeing quality of service (QoS) requirements. If the vehicle’s tasks unequally migrate to specific VECSs, the performance can degrade in terms of latency and quality of service. Therefore, in this study, we define a computational task migration problem for balancing the loads of VECSs and minimizing migration costs. To solve this problem, we adopt a reinforcement learning algorithm in a cooperative VECS group environment that can collaborate with VECSs in the group. The objective of this study is to optimize load balancing and migration cost while satisfying the delay constraints of the computation task of vehicles. Simulations are performed to evaluate the performance of the proposed algorithm. The results show that compared to other algorithms, the proposed algorithm achieves approximately 20–40% better load balancing and approximately 13–28% higher task completion rate within the delay constraints.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献