Improved AND/OR Tree Search Algorithm in Analysis of Stochastic and Time-Dependent Shortest Path Problem

Author:

Xie Zhi-ying12ORCID,He Yuan-Rong12ORCID,Jiang Yuan-tong34,Chen Chih-Cheng56ORCID

Affiliation:

1. School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China

2. Big Data Institute of Natural Hazards Monitoring for Digital Fujian, Xiamen, Fujian 361024, China

3. School of Cultural Industries and Tourism, Xiamen University of Technology, Xiamen 361024, China

4. Research Center of Cultural Industries, Fujian Social Science Research Base, Xiamen 361024, China

5. School of Ocean Information Engineering, Jimei University, Xiamen 361021, China

6. Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan

Abstract

Real-time vehicle guidance effectively reduces traffic jams and improves the operational efficiency of urban transportation. The trip time on a route is considered as a random process that changes with time, and the shortest path selection requires a random dynamic model and the solution of a decision-making problem. Thus, the shortest trip time is the criterion to determine the dynamic path selection by a random dynamic programming (DP) model which discretizes the trip times in the continuous segments on the route. In this study, a numerical model of random dynamic programming is established by using a probability tree model and an AND/OR (AO∗) algorithm to select the path of the shortest trip time. The results show that the branches of the probability tree are only accumulated on the “quantity” and do not cause a “qualitative” change. The inefficient accumulation of “quantity” affects the efficiency of the algorithm, so it is important to separate the accumulation of “quantity” from node expansion. The accumulation of “quantity” changes the trip time according to the entering time into a segment, which demands an improved AO∗ algorithm. The new AO∗ algorithm balances between efficiency and the trip time and provides the optimal real-time vehicle guidance on the road.

Funder

Fujian Province Natural Fund Project

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3