MEA Cost Reduction through Manufacturing Approaches and Material‐Level Innovation

Author:

Banham DustinORCID,Peng Ye,Bai Kyoung,Choi Ja-Yeon,Wang Huancheng

Abstract

Globally, the demand for proton exchange membrane fuel cells (PEMFCs) has been growing exponentially. For this growth to continue, it is imperative that the cost of PEMFC technology continues to decrease. While most cost reduction strategies focus on a reduction in the loading of platinum group metals (PGMs), for a large portion of the fuel cell community, these approaches are not yet viable as they require advanced system strategies and unification of the system, stack, membrane electrode assembly (MEA), and component teams which is not widely achieved in the broader fuel cell market. Unlike prior discussions on this topic which depend upon the incorporation of novel materials or significantly larger manufacturing volumes, in this overview, more immediately achievable cost reduction methods are examined to determine a reasonable cost target that can be achieved without having to target ultralow PGM loadings. It will be shown that through rational selection of available Pt/C catalysts for specific applications, sourcing of core materials within China, and improvements in the production process to reduce waste, the MEA price can reach levels of <USD 0.06 W−1 even with conventional PGM loadings (e.g., 0.07 mg cm−2 anode and 0.3 mg cm−2 cathode).

Funder

Special Project for Research and Development in Key areas of Guangdong Province

Publisher

Wiley

Reference69 articles.

1. Batteries and fuel cells for emerging electric vehicle markets

2. Platinum catalyst supported on mesoporous carbon for PEMFC

3. FCEV vs. BEV — A short overview on identifying the key contributors to affordable & clean energy (SDG-7)

4. Mesoporous carbons as low temperature fuel cell platinum catalyst supports

5. Ministry of Ecology and Environment of the People’s Republic of China China mobile source environmental management annual report 2024 https://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/202008/P020200811521365906550.pdf accessed.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3