Affiliation:
1. College of Computer Science and Technology, Harbin Engineering University, Heilongjiang, China
2. Department of Computer Science, Georgia State University, GA, USA
Abstract
At present, with the popularization of intelligent equipment. Almost every smart device has a GPS. Users can use it to obtain convenient services, and third parties can use the data to provide recommendations for users and promote relevant business development. However, due to the large number of location data, there are serious data sparsity problems in the data uploaded by users. At the same time, with great value comes great danger. Once the user’s location information is obtained by the attacker, severe security issues will be caused. In recent years, a lot of researchers have studied the recommendation of point of interests (POIs) and the privacy protection of location. Yet, few of them have explored both together, which induces some drawbacks on the combination of them. This paper combines POI recommendation with a privacy protection mechanism. Besides providing user with POI recommendation service, it also protects the privacy of user’s location. We proposed a POI recommendation model with privacy protection mechanism, termed POI recommendation model for community groups based on privacy protection (CGPP-POI). This model can ensure the recommendation accuracy and reduce the leakage of user location information via taking advantages of the characteristics of location. At the same time, it deals with the problem of poor recommendation performance caused by sparse data. In addition, through the expansion of location, random and other methods are used to protect the user’s real check-in information. First, the data processed at the terminal satisfied local differential privacy. At the same time, we use the data to build a recommendation model. Then, we use a community of user in the model to improve the availability of these disturbed data, explore the relationship between users, and expand check-ins within the community. Finally, we provide the POI recommendations to users. Based on the traditional evaluation criteria, we adopted four metrics, i.e., accuracy, recall rate, coverage rate, and popularity in evaluation part, where intensive experiments conducted on real datasets Gowalla and Brightkite demonstrate that our approach outperforms the baseline methods significantly.
Funder
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Reference39 articles.
1. Survey on data analysis in social media: a practical application aspect;Q. Hou;Big Data Mining and Analytics,2020
2. Location diversity: enhanced privacy protection in location based services;M. Xue
3. Deep Learning Based Inference of Private Information Using Embedded Sensors in Smart Devices
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献